Posts Tagged ‘Water harvesting’

Set in stone: time travel at BGS Keyworth


The recently opened Geological Walk at British Geological Survey’s headquarters in Keyworth near Nottingham crams three billion years of the Earth’s history into a beautiful, 130m long stone concourse. Stephen Parry (Mineralogist and Petrologist at the BGS) and Michael Heap (Managing Director of expert natural stone suppliers CED Ltd) did the time-walk with me.

An ammonite-bearing block of Portland limestone

Each step on the Geological Walk takes you 25 million years closer to the present day. What can we learn from this ambitious project? (more…)


Dezhou – a technology hub for solar energy


Following on from our earlier post on Trondheim’s strategy to create a ‘supercluster’ for maritime knowledge and research, here’s a look at Dezhou, in Shangdong Province, China, which has developed itself as a ‘world solar city’.

Dezhou is hosting the 2010 International Solar Cities congress in September. It is home to 100 solar enterprises with 586 solar product patents, and five solar scientific research programmes belonging to National Plan 863.

China Solar City

China Solar City

Called China Solar Valley, the Dezhou cluster covers an area of 330 hectares of research and manufacturing facilities, including the world’s largest solar water heater production plant. Around 800,000 people work in the solar panel industry.

There has also been a determined effort to ensure that solar technologies are put to spectacular use.

The Sun-Moon Mansion is a 75,000m2 solar-powered building (office space / exhibition centre / R&S centre / hotel) with over 2000 solar collectors above its roof.

The Sun-Moon Mansion

The Sun-Moon Mansion

Seasonal heat storage, solar heating and cooling, and geothermal heating are used to supply hot water, cooling in summer, and heating in winter, whilst photovoltaics generate energy and provide lighting.

Energy saving glass, sun-shading panels, external wall insulation, roof gardens, rainwater collection and water treatment systems also feature.

But there’s also the more mundane, but probably more important, schemes that address the needs of the local population. As a result of the One million solar roofs project more than 80% of the urban buildings are covered by solar water heaters.

Solar bathrooms in hundred villages is another project.

ESI references:

Foster’s Masdar City: putting sustainable energy to the test


OnePlanetCommunities on Flickr

Foster + Partners’ Masdar City development in Abu Dhabi is getting a lot of press and blog coverage at the moment. The project is, in the architects’ words, “a six million square metre sustainable development that uses the traditional planning principles of a walled city, together with existing technologies, to achieve a carbon-neutral, zero waste community. It will be a centre for the development of new ideas for energy production”.

Building recently published pictures of the Masdar Institute of Science and Technology. The nicely detailed terracotta-coloured GRC cladding of the city’s first completed building reflects aspects of traditional Islamic architecture.

Masdar’s energy will come entirely from renewable resources:

• a 40–60 megawatt solar power plant
• roof-mounted photovoltaic modules
• wind farms outside the city’s perimeter
• geothermal power
• waste-to-energy
• the world’s largest hydrogen power plant

Behind the scenes, Masdar will also host the world’s first real-time study to test the effectiveness of smart home appliances in reducing electricity consumption during peak demand periods, as detailed in Abu Dhabi’s newspaper The National.

Narrow, shaded streets (OnePlanetCommunities on Flickr)

General Electric (GE) selected Masdar City for this pilot project because its electricity will be distributed through a ‘smart grid’ that combines power transmission with the internet.

The two-year Masdar City test will use ‘demand response enabled appliances’ specifically designed for the pilot programme, and will involve some of the city’s first residents. Test results will be of great interest in the European Union, which aims for 80% of all households to be equipped with a smart electricity meter by 2020.

For an alternative view, see this debate on Treehugger on whether a development like Masdar can ever be ‘truly sustainable’.

ESI references:

King Abdullah International Gardens: a giant oasis in the desert


KAIG: set for completion in 2011 (Barton Willmore)

Barton Willmore has designed this spectacular botanical garden, set in 160 hectares of arid desert landscape in the Saudi central region, to the south west of Riyadh.
The ambitious team, led by Nick Sweet and advised by experts from the Eden Project and the Natural History Museum, sees the project as a chance “to educate, to entice, to excite and to entertain, and whilst doing so, to pass on a message about who we are, where we have come from, where we may be going, and the choices that may still be available to us.”

The Butterfly Garden (image: Barton Willmore)

  • KAIG will record 400 million years of botanical history by creating a paleobotanic timeline, with authentic interpretations of ecosystems that existed on this site in past epochs.
  • The crescent-shaped main building will enclose seven controlled environments.
  • Visitors – up to 45,000 per day – will be taken on a journey through landscapes from the Devonian, Carboniferous, Jurassic, Cretaceous, Cenzoic and Pilocene eras.
  • There will also be scientific gardens, a Water Garden and a Wadi Garden (wadi is Arabic for dry riverbed or valley).
  • Finally, the Garden of Choices explores the consequences of the decisions we make regarding the environment.
  • The Paleobotanic Building (image: Barton Willmore)

  • The carbon-neutral scheme will harvest stone, rainwater and solar power to sustain its development and operation.
  • A comprehensive seed-bank, protected from germination by the dry desert climate, will aid future research and project developments.
  • The project website contains a wealth of images and information: masterplan, strategic contexts, a database of botanical garden precedents, fly-by animation, perspective sketches, and extensive details of each individual garden.
  • Followers of the project’s blog are looking forward to keeping track of the 3-year building process via site webcams and Google Earth.

    An external view (image: Barton Willmore)

    ESI references:

  • Building starts on The World islands


    Computer rendition of The World archipelago

    Having been suspended as a result of global recession, construction is now due to start on Dubai’s cluster of artificial islands, The World, writes the New Civil Engineer.

    Project information from Wikipedia:

    • The development was originally conceived by Dubai’s ruler, Sheikh Mohammed bin Rashid Al Maktoum.
    • The entire development covers an area 9km in length and 6km in width, surrounded by an oval-shaped breakwater.
    • The World islands are composed mainly of sand dredged from Dubai’s shallow coastal waters.
    • Land parcels are zoned for various uses: estate, mid density, high density, resorts and commercial.
    • Utilities are routed underwater, with water plants at each of the hubs pumping fresh water to the islands.
    • Wastewater and refuse systems are an individual concern for each island.
    Picture 1

    The World islands' first completed structure

    ESI references: